Neuroimaging

How to see what’s really going on in there …

Structural vs. Functional imaging

Structural Imaging: Brain Anatomy

Functional Imaging: Brain Function

Structural Brain Imaging

CT

MRI

Localization of lesions

Structural Brain Imaging

Computerized Axial Tomography:

- X-ray technology
- Information on tissue densities (CSF, brain tissue, bone)
- Advantages:
 - Inexpensive
- Disadvantages:
 - Poor spatial resolution
 - Ionizing radiation

Magnetic Resonance Imaging:

- Static magnetic field: lines up hydrogen atoms
- Pulse sequence: disrupts hydrogen atoms
- Relaxation time: time it takes to return to original position; differs according to tissue type
- Advantages:
 - Good spatial resolution
- Disadvantages:
 - Can’t be used with people who have metal in their bodies or pacemakers
Warning: MRIs and Metal don’t mix!

Structural Brain Imaging

The effect of a hair-band:

With ... Without ...

Structural Brain Imaging

3D Reconstructions of images:
Can view brain in axial, sagittal, and coronal planes

movie clips ...

Structural Brain Imaging

Functional Brain Imaging

Structural MRI
Collects one image at each point in the brain

Functional Brain Imaging

Functional MRI
Collects many images at each point in the brain over time (e.g., every 2 sec for 5 mins)

Functional Brain Imaging

- Functional MRI (fMRI)
- Positron Emission Tomography (PET)
- Event-Related Potentials (ERP)
- Magnetoencephalography (MEG)
- Transcranial Magnetic Stimulation (TMS)
Functional MRI

- As neuronal activity ↑
 - blood flow ↑
 - blood oxygenation ↑
- fMRI relies on the **BOLD** effect
 - Blood Oxygen Level Dependent
 - Oxygenated blood – magnetic
 - De-oxygenated blood – paramagnetic

↑ neural activity → ↑ blood flow → ↑ oxyhemoglobin → ↑ MR signal

Functional Brain Imaging: fMRI

1. Functional images
2. Subtraction
 - Condition 1
 - Condition 2
 - Difference
3. Superimpose on structural MRI

Functional Brain Imaging: fMRI

- Compare MR signal in different conditions

Functional Brain Imaging: fMRI

- **Basal state**
 - arterioles
 - capillary bed
 - venules
- **Activated state**
 - arterioles
 - capillary bed
 - venules

↑ neural activity → ↑ blood flow → ↑ oxyhemoglobin → ↑ MR signal

Functional Brain Imaging: fMRI

- ROI Time Course
- fMRI Signal (% change)
- Condition

Functional Brain Imaging: fMRI

- Structural MRI
- Functional images
- Time
- Condition
Functional Brain Imaging: fMRI

Research Applications: Video clip

Clinical Applications: Pre-surgical scanning

Language mapping: Verb Generation

Advantages:
- Good spatial resolution

Disadvantages:
- Indirect measure of brain activity (i.e., doesn’t measure active neurons but increased blood flow)
- Regions of signal dropout: junctions between air and tissue

Functional Brain Imaging: PET

Positron Emission Tomography:
- As neuronal activity ↑
 • Supply of glucose and oxygen to region ↑
- PET uses radioactive forms of glucose and oxygen to trace regional cerebral blood flow (rCBF)
- How it works:
 • Inject / inhale tracer
 • Tracer reverts to its stable form by emitting a proton
 • This collides with electron – annihilation
 • Two gamma photons are emitted in opposite directions – detected by scanner

Positron emission
Functional Brain Imaging: PET

Condition 1 Condition 2 Difference

Recall – Recognition Recognition – Recall

Cabeza et al. 2003

Functional Brain Imaging: PET

Clinical Applications: Changes in metabolism

Normal Alzheimer’s

Functional Brain Imaging: PET

Advantages:
- Good spatial resolution
- Metabolic studies
- Receptor mapping
 - e.g., dopamine receptors

Disadvantages:
- Invasive
 - Injecting radioactive substances
- Poor temporal resolution
- Indirect measure

Functional Brain Imaging: ERP

Event-Related Potentials:
- Neurons generate electromagnetic fields when active
- If a large number of neurons are simultaneously active they can generate fields detectable on the scalp
- EEG: Recording the brain’s ongoing activity
- ERP: Recording the brain’s electrical activity in relation to an “event” (e.g., onset of a stimulus)
Functional Brain Imaging: ERP

128-Electrode Net:

Components of the waveform:

– Exogenous: early; related to physical characteristics of stimulus
– Endogenous: later; related to internal cognitive states

The N400: Semantically incongruent sentences

The pizza was too hot to cry vs. The pizza was too hot to eat

Difference waveforms: The P300

Inverse Problem: Where is the signal coming from?

• The skull and scalp distort electrical fields generated by neurons
• As we measure on the scalp, we have little information about the generators of the electrical fields inside the brain (i.e., the active brain regions)
• We don’t have information about the number, location, orientation, and strength of these generators
Functional Brain Imaging: ERP

What is a dipole?

- A dipole is the generator of the electrical field
- It is positive at one end, negative at the other

Functional Brain Imaging: ERP

Inverse Problem: Dipole modeling

- Dipole Modeling: Using mathematical models to determine the most likely generators of the electrical field
- Information about location used from fMRI and PET (where are the generators most likely to be?)

Functional Brain Imaging: ERP

Cool ways to display ERP data

Functional Brain Imaging: ERP

Advantages:
- Good temporal resolution: millisecond by millisecond
- Non-invasive
- Comparatively inexpensive

**Disadvantages:*
- Limited spatial resolution: The Inverse Problem
- Difficulty in “imaging” cells parallel to surface

Functional Brain Imaging: MEG

Magnetoencephalography:
- Neurons generate magnetic fields when they are active
- So if many neurons are simultaneously active, these magnetic fields are detectable on the scalp
- MEG:
 - SQUIDS are used to record these magnetic fields
 - Surrounded by super-cool liquid helium (dewer)
Advantages:
- Good temporal resolution: millisecond by millisecond
- Spatial resolution better than ERP (close to PET)
- Not as distorted by skull as EEG signal

Disadvantages:
- Very expensive
- Limited resolution for deep structures
- Difficulty in "imaging" cells radial to surface

Functional Brain Imaging

- Functional MRI (fMRI)
- Positron Emission Tomography (PET)
- Event-Related Potentials (ERP)
- Magnetoencephalography (MEG)
- Transcranial Magnetic Stimulation (TMS)

Transcranial Magnetic Stimulation:
- Doesn’t “image” neural activity
- Modulates or disrupts neural activity – creates a "reversible lesion" or "scrambles" neural activity
- How does it do this?
 • Coils placed on scalp create a magnetic field that induces an electrical field
 • This alters membrane potential of neurons, causing them to fire randomly
Functional Brain Imaging: TMS

TMS Coil

TMS of motor cortex: Causes muscle movement
Forearm
Jaw
TMS of Broca’s area: Disrupts speech production

Functional Brain Imaging: TMS

Advantages:
– Creates temporary lesion: can investigate if a region is necessary for a function

Disadvantages:
– Adverse effects (e.g., seizures)
– Only useful for brain regions close to the surface

Functional Brain Imaging: TMS

Take-home messages:
– Brain imaging is an exciting method we can use to figure out how the brain works
– If you want a picture of your brain, sign up for a brain imaging study near you!!

Donna’s brain